Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 19(39): e2300040, 2023 09.
Article in English | MEDLINE | ID: mdl-37264756

ABSTRACT

The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions that restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions are used so far (typically Mg2+ and Na+ ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (~134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+ , Ba2+ , Na+ , K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+ , K+ and Li+ ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+ , Ca2+ and Ba2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.


Subject(s)
Nanostructures , Nanotechnology , Nanotechnology/methods , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Cations
2.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205441

ABSTRACT

The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions which restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions have been used so far (typically Mg 2+ and Na + ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (∼134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca 2+ , Ba 2+ , Na + , K + and Li + and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na + , K + and Li + ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg 2+ , Ca 2+ and Ba 2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.

3.
Nucleic Acids Res ; 51(9): 4625-4636, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37013991

ABSTRACT

Cadmium (Cd) is one of the most toxic heavy metals. Exposure to Cd can impair the functions of the kidney, respiratory system, reproductive system and skeletal system. Cd2+-binding aptamers have been extensively utilized in the development of Cd2+-detecting devices; however, the underlying mechanisms remain elusive. This study reports four Cd2+-bound DNA aptamer structures, representing the only Cd2+-specific aptamer structures available to date. In all the structures, the Cd2+-binding loop (CBL-loop) adopts a compact, double-twisted conformation and the Cd2+ ion is mainly coordinated with the G9, C12 and G16 nucleotides. Moreover, T11 and A15 within the CBL-loop form one regular Watson-Crick pair and stabilize the conformation of G9. The conformation of G16 is stabilized by the G8-C18 pair of the stem. By folding and/or stabilizing the CBL-loop, the other four nucleotides of the CBL-loop also play important roles in Cd2+ binding. Similarly to the native sequence, crystal structures, circular dichroism spectrum and isothermal titration calorimetry analysis confirm that several variants of the aptamer can recognize Cd2+. This study not only reveals the underlying basis for the binding of Cd2+ ions with the aptamer, but also extends the sequence for the construction of novel metal-DNA complex.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Cadmium , Molecular Conformation , DNA
4.
Nucleic Acids Res ; 51(8): 4055-4063, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36477864

ABSTRACT

The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.


Subject(s)
DNA , Nanostructures , DNA/chemistry , Nanotechnology , RNA , Molecular Dynamics Simulation
5.
ACS Chem Biol ; 17(12): 3478-3488, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36453647

ABSTRACT

To extend the approach of using RNA aptamers as transient protective groups for the synthesis of novel small-molecule drug derivatives from the existing aminoglycosides, we incorporated 2'-5' phosphodiester backbone modification in a structurally known neomycin RNA aptamer and studied the binding of a series of aminoglycosides using isothermal calorimetry (ITC) and molecular dynamics (MD) simulation. Experimental characterization of amikacin, a commercially available and widely used aminoglycoside for treating bacterial infections, shows that the aptamer A1 with a 2'-5' linkage between G15 and U16 exhibits a sevenfold increase in binding affinity with a lower binding energy compared to the native aptamer. Molecular dynamics (MD) simulation studies rationalize that this noncanonical linkage generates a narrower binding pocket by creating a superspiral RNA helical structure, which improves the ligand's fit in the binding pocket. These results provide new insights into applying 2'-5' linkages to diversify functional RNA aptamers as noncovalent protective groups in the synthesis of aminoglycoside derivatives, which can be further extended to other current drug molecules and complex natural compounds to make new pools of drug candidates more efficiently.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Molecular Dynamics Simulation , Amikacin , Aminoglycosides/chemistry , Anti-Bacterial Agents/chemistry
6.
ACS Appl Bio Mater ; 5(11): 5089-5093, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35652916

ABSTRACT

Detection of metal ions has essential roles in biology, food industry, and environmental sciences. In this work, we developed a Pb2+ detection strategy based on a fluorophore-tagged Pb2+-binding aptamer. The DNA aptamer changes its conformation on binding Pb2+, switching from an "off" state (low fluorescence) to an "on" state (high fluorescence). This method provides a quantitative readout with a detection limit of 468 nM, is highly specific to Pb2+ when tested against other metal ions, and is functional in complex biofluids. Such metal sensing DNA aptamers could be coupled with other biomolecules for sense-and-actuate mechanisms in biomedical and environmental applications.


Subject(s)
Aptamers, Nucleotide , Lead , Aptamers, Nucleotide/chemistry , Ions , Fluorescent Dyes/chemistry , Fluorescence
7.
Int J Mol Sci ; 23(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35328743

ABSTRACT

Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.


Subject(s)
Myotonic Dystrophy , RNA , Fluorescence , Humans , Ligands , Myotonic Dystrophy/genetics , RNA/genetics , RNA-Binding Proteins/metabolism , Sisomicin
8.
Sci Rep ; 12(1): 460, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013452

ABSTRACT

Owing to its great threat to human health and environment, Pb2+ pollution has been recognized as a major public problem by the World Health Organization (WHO). Many DNA aptamers have been utilized in the development of Pb2+-detection sensors, but the underlying mechanisms remain elusive. Here, we report three Pb2+-complexed structures of the thrombin binding aptamer (TBA). These high-resolution crystal structures showed that TBA forms intramolecular G-quadruplex and Pb2+ is bound by the two G-tetrads in the center. Compared to K+-stabilized G-quadruplexes, the coordinating distance between Pb2+ and the G-tetrads are much shorter. The T3T4 and T12T13 linkers play important roles in dimerization and crystallization of TBA, but they are changeable for Pb2+-binding. In combination with mutagenesis and CD spectra, the G8C mutant structure unraveled that the T7G8T9 linker of TBA is also variable. In addition to expansion of the Pb2+-binding aptamer sequences, our study also set up one great example for quick and rational development of other aptamers with similar or optimized binding activity.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Lead/chemistry , Circular Dichroism , Crystallization , Environmental Pollutants/chemistry , G-Quadruplexes , Models, Molecular
9.
Curr Protoc ; 1(11): e307, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34792865

ABSTRACT

This protocol describes a step-by-step chemical synthesis approach to prepare N3 -methylcytidine (m3 C) and its phosphoramidite. The method for synthesizing m3 C starts from commercially available cytidine, and proceeds via N3 -methylation in the presence of MeI, which generates the N3 -methylcytidine (m3 C) nucleoside, followed by the installation of several protecting groups at sites that include the 5'-hydroxyl group (4,4'-dimethoxytrityl protection), the 4-amino group (benzoyl protection), and the 2'-hydroxyl group (tert-butyldimethylsilyl, TBDMS, protection). Standard phosphoramidite chemistry is applied to prepare the final m3 C phosphoramidite for solid-phase synthesis of a series of RNA oligonucleotides. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of N3 -methylcytidine (m3 C) and its phosphoramidite Basic Protocol 2: Automated synthesis of m3 C modified RNA oligonucleotides.


Subject(s)
Oligonucleotides , RNA , Cytidine , Nucleosides , Solid-Phase Synthesis Techniques
10.
ACS Omega ; 5(44): 28565-28570, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33195907

ABSTRACT

Ag+ has been known to mediate several natural metallo-base pairs. Based on the unique structural information of a short 8-mer DNA strand (5'-GCACGCGC-3') induced by Ag+, we constructed several fluorescent DNA beacons for the detection of Ag+ according to the increase in the fluorescence emission on Ag+ binding. This Ag+ detection assay is quick, sensitive, and easy to adapt and can function in a wide range of temperatures from 5 to 65 °C.

11.
Nanoscale ; 12(42): 21583-21590, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33089274

ABSTRACT

Nucleic acid nanostructures with different chemical compositions have shown utility in biological applications as they provide additional assembly parameters and enhanced stability. The naturally occurring 2'-5' linkage in RNA is thought to be a prebiotic analogue and has potential use in antisense therapeutics. Here, we report the first instance of DNA/RNA motifs containing 2'-5' linkages. We synthesized and incorporated RNA strands with 2'-5' linkages into different DNA motifs with varying number of branch points (a duplex, four arm junction, double crossover motif and tensegrity triangle motif). Using experimental characterization and molecular dynamics simulations, we show that hybrid DNA/RNA nanostructures can accommodate interspersed 2'-5' linkages with relatively minor effect on the formation of these structures. Further, the modified nanostructures showed improved resistance to ribonuclease cleavage, indicating their potential use in the construction of robust drug delivery vehicles with prolonged stability in physiological conditions.


Subject(s)
Nanostructures , RNA , DNA , Molecular Dynamics Simulation , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...